[1]
Thiamin (Vitamin B1) ist wichtig für den Energiestoffwechsel.
Thiamin (Vitamin B1) ist wichtig für den Kohlenhydratstoffwechsel.
Thiamin (Vitamin B1) ist wichtig für die neurale Funktion.
Thiamin (Vitamin B1) ist wichtig für die Funktion der Nerven des Herzens
Thiamin (Vitamin B1) unterstützt den Energiehaushalt
Thiamin (Vitamin B1) dient als Coenzym bei wichtigen Reaktionen im Energiestoffwechsel.
Thiamin (Vitamin B1) ist wichtig für die Reizübermittlung vom Nerv zum Muskel.
Thiamin (Vitamin B1) wird für die Gewinnung von Energie aus der Nahrung benötigt.
Thiamin (Vitamin B1) ist für die Bildung von Energie aus Kohlenhydraten erforderlich
Thiamin (Vitamin B1) unterstützt die normale Funktion des Nervensystems.
Thiamin (Vitamin B1) hat wichtige Funktionen im Nervensystem
Thiamin (Vitamin B1) unterstützt die Energieaufnahme aus aus Lebensmitteln.
Thiamin (Vitamin B1) ist wichtig für die Funktion der Nerven / des Sehnervs.
Thiamin (Vitamin B1) ist wichtig für die Erregungsleitung der Nerven / des Sehnervs.
Thiamin (Vitamin B1) unterstützt die Herzfunktion
Pantothensäure (Vitamin B5) trägt zur Verringerung von Müdigkeit und Ermüdung bei
Pantothensäure (Vitamin B5) trägt zu einer normalen geistigen Leistung bei
Pantothensäure (Vitamin B5) als Coenzym-Bestandteil für den gesamten Stoffwechsel von zentraler Bedeutung
Pantothensäure (Vitamin B5) ist wichtig für den Energiestoffwechsel.
Pantothensäure (Vitamin B5) zur Unterstützung der Stoffwechselfunktion (Kohlenhydrat-, Fett- und Eiweißstoffwechsel)
Vitamin B6 trägt zur Verringerung von Müdigkeit und Ermüdung bei
Vitamin B6 trägt zu einem normalen Energiestoffwechsel bei
Vitamin B6 trägt zu einer normalen Funktion des Nervensystems bei
Vitamin B6 trägt zu einer normalen Funktion des Immunsystems bei
Vitamin B6 trägt zur normalen psychischen Funktion bei
Vitamin B6 trägt zu einem normalen Eiweiß- und Glycogenstoffwechsel bei
Vitamin B12 trägt zur Verringerung von Müdigkeit und Ermüdung bei
Vitamin B12 trägt zu einer normalen Funktion des Nervensystems bei
Vitamin B12 trägt zu einem normalen Energiestoffwechsel bei
Vitamin B12 trägt zur normalen psychischen Funktion bei
Vitamin B12 trägt zu einer normalen Funktion des Immunsystems bei
[2] Sambon M, Wins P, Bettendorff L. Neuroprotective Effects of Thiamine and Precursors with Higher Bioavailability: Focus on Benfotiamine and Dibenzoylthiamine. Int J Mol Sci. 2021 May 21;22(11):5418. doi: 10.3390/ijms22115418. PMID: 34063830; PMCID: PMC8196556. https://pubmed.ncbi.nlm.nih.gov/34063830
[3] Cooper JR, Pincus JH. The role of thiamine in nervous tissue. Neurochem Res. 1979 Apr;4(2):223-39. doi: 10.1007/BF00964146. PMID: 37452. https://pubmed.ncbi.nlm.nih.gov/37452
[4] Pan, X. et al. (2016): Long-Term Cognitive Improvement After Benfotiamine Administration in Patients with Alzheimer's Disease. Neurosci Bull. 32(6):591-596. https://www.ncbi.nlm.nih.gov/pubmed/27696179
[5] Ebner, F. et al. (2002): Topical use of dexpanthenol in skin disorders. Am J Clin Dermatol. 3(6):427-33, https://www.ncbi.nlm.nih.gov/pubmed/12113650
[6] Gehring, W. & Gloor, M. (2000). Effect of topically applied dexpanthenol on epidermal barrier function and stratum corneum hydration. Results of a human in vivo study. Arzneimittelforschung 50(7):659-63. https://www.ncbi.nlm.nih.gov/pubmed/10965426
[7] Kennedy, D.O. (2016): B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 8(2):68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772032
[8] Tahiliani A.G., Beinlich C.J. “Pantothenic acid in health and disease.” Vitamins and Hormones. 1991;46:165-228. https://www.ncbi.nlm.nih.gov/pubmed/1746161
[9] Rucker R.B., Bauerly K. “Pantothenic acid”. In: Zempleni J., Suttie J.W., Gregory J.F. III, Stover P.J., editors. Handbook of Vitamins. 5th ed. CRC Press; Boca Raton, FL, USA: 2013
[10] Kennedy D. O. (2016). B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068
[11] Guilarte TR. Vitamin B6 and cognitive development: recent research findings from human and animal studies. Nutr Rev. 1993 Jul;51(7):193-8. doi: 10.1111/j.1753-4887.1993.tb03102.x. PMID: 8414222. https://pubmed.ncbi.nlm.nih.gov/8414222
[12] Riggs KM, Spiro A 3rd, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996 Mar;63(3):306-14. doi: 10.1093/ajcn/63.3.306. PMID: 8602585. https://pubmed.ncbi.nlm.nih.gov/8602585
[13] Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells. 2018;7(7):84. Published 2018 Jul 22. doi:10.3390/cells7070084 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071262
[14] Ink SL, Henderson LM. Vitamin B6 metabolism. Annu Rev Nutr. 1984;4:455-70. doi: 10.1146/annurev.nu.04.070184.002323. PMID: 6380540.
https://pubmed.ncbi.nlm.nih.gov/6380540
[15] Tangney CC, Aggarwal NT, Li H, et al. Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination [published correction appears in Neurology. 2011 Nov 8;77(19):1773]. Neurology. 2011;77(13):1276-1282. doi:10.1212/WNL.0b013e3182315a33 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179651/
[16] Jatoi S, Hafeez A, Riaz SU, Ali A, Ghauri MI, Zehra M. Low Vitamin B12 Levels: An Underestimated Cause Of Minimal Cognitive Impairment And Dementia. Cureus. 2020;12(2):e6976. Published 2020 Feb 13. doi:10.7759/cureus.6976 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077099
[17] Morris M.S., Selhub J., Jacques P.F. “Vitamin B-12 and folate status in relation to decline in scores on the mini-mental state examination in the framingham heart study.” Journal of the American Geriatric Society. 2012 Aug;60(8):1457-64 https://pubmed.ncbi.nlm.nih.gov/22788704
[18] Rathod, R., Kale, A. & Joshi, S. Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function. J Biomed Sci23,17 (2016). https://doi.org/10.1186/s12929-016-0241-8
[19] NHS.UK. (2021). Chronic fatigue syndrome (CFS/ME). Available online: https://www.nhs.uk/conditions/chronic-fatigue-syndrome-cfs
[20] Morell P, Quarles RH. The Myelin Sheath. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27954
[21] Josef Dudel, Randolf Menzel, Robert F. Schmidt (Hrsg.): Neurowissenschaft: Vom Molekül zur Kognition. 2. Auflage. Springer-Verlag, 2013, ISBN 978-3-642-56497-0, S. 113. https://books.google.de/books?id=xeodBgAAQBAJ&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0
[22] Bryan J. Psychological effects of dietary components of tea: caffeine and L-theanine. Nutr Rev. 2008 Feb;66(2):82-90. doi: 10.1111/j.1753-4887.2007.00011.x. PMID: 18254874. https://pubmed.ncbi.nlm.nih.gov/18254874
[23] Camfield DA, Stough C, Farrimond J, Scholey AB. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev. 2014 Aug;72(8):507-22. doi: 10.1111/nure.12120. Epub 2014 Jun 19. PMID: 24946991.
https://pubmed.ncbi.nlm.nih.gov/24946991
[24] Dietz C, Dekker M. Effect of Green Tea Phytochemicals on Mood and Cognition. Curr Pharm Des. 2017;23(19):2876-2905. doi: 10.2174/1381612823666170105151800. PMID: 28056735.
https://pubmed.ncbi.nlm.nih.gov/28056735
[25] Nobre AC, Rao A, Owen GN. L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac J Clin Nutr. 2008;17 Suppl 1:167-8. PMID: 18296328.
https://pubmed.ncbi.nlm.nih.gov/18296328
[26] White DJ, de Klerk S, Woods W, Gondalia S, Noonan C, Scholey AB. Anti-Stress, Behavioural and Magnetoencephalography Effects of an L-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients. 2016 Jan 19;8(1):53. doi: 10.3390/nu8010053. PMID: 26797633; PMCID: PMC4728665. https://pubmed.ncbi.nlm.nih.gov/26797633
[27] Konstantinos, Fanaras and Heun, Reinhard. "The effects of Guarana (Paullinia cupana) supplementation on the cognitive performance of young healthy adults – a Systematic Review" Global Psychiatry, vol.2, no.2, 2019, pp.171-182. https://doi.org/10.2478/gp-2019-0015
[28] Kennedy DO, Haskell CF, Wesnes KA, Scholey AB. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacol Biochem Behav. 2004 Nov;79(3):401-11. doi: 10.1016/j.pbb.2004.07.014. PMID: 15582012.
https://pubmed.ncbi.nlm.nih.gov/15582012
[29] Scholey A, Bauer I, Neale C, Savage K, Camfield D, White D, Maggini S, Pipingas A, Stough C, Hughes M. Acute effects of different multivitamin mineral preparations with and without Guaraná on mood, cognitive performance and functional brain activation. Nutrients. 2013 Sep 13;5(9):3589-604. doi: 10.3390/nu5093589. PMID: 24067387; PMCID: PMC3798923.
https://pubmed.ncbi.nlm.nih.gov/24067387
[30] Silva CP, Sampaio GR, Freitas RAMS, Torres EAFS. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem. 2018 Nov 30;267:405-409. doi: 10.1016/j.foodchem.2017.08.078. Epub 2017 Aug 24. PMID: 29934184.
https://pubmed.ncbi.nlm.nih.gov/29934184
[31] Lima NDS, Teixeira L, Gambero A, Ribeiro ML. Guarana (Paullinia cupana) Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet. Nutrients. 2018 Jan 31;10(2):165. doi: 10.3390/nu10020165. PMID: 29385074; PMCID: PMC5852741.
https://pubmed.ncbi.nlm.nih.gov/29385074
[32] Park KC, Jin H, Zheng R, Kim S, Lee SE, Kim BH, Yim SV. Cognition enhancing effect of panax ginseng in Korean volunteers with mild cognitive impairment: a randomized, double-blind, placebo-controlled clinical trial. Transl Clin Pharmacol. 2019 Sep;27(3):92-97. doi: 10.12793/tcp.2019.27.3.92. Epub 2019 Sep 30. PMID: 32055589; PMCID: PMC6989239. https://pubmed.ncbi.nlm.nih.gov/32055589
[33] White DJ, Camfield DA, Ossoukhova A, Savage K, Le Cozannet R, Fança-Berthon P, Scholey A. Effects of Panax quinquefolius (American ginseng) on the steady state visually evoked potential during cognitive performance. Hum Psychopharmacol. 2020 Nov;35(6):1-6. doi: 10.1002/hup.2756. Epub 2020 Sep 8. PMID: 32896022; PMCID: PMC7685123. https://pubmed.ncbi.nlm.nih.gov/32896022
[34] Kennedy DO. Phytochemicals for Improving Aspects of Cognitive Function and Psychological State Potentially Relevant to Sports Performance. Sports Med. 2019 Feb;49(Suppl 1):39-58. doi: 10.1007/s40279-018-1007-0. PMID: 30671903; PMCID: PMC6445817. https://pubmed.ncbi.nlm.nih.gov/30671903
[35] Reay JL, Kennedy DO, Scholey AB. Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained 'mentally demanding' tasks. J Psychopharmacol. 2006 Nov;20(6):771-81. doi: 10.1177/0269881106061516. Epub 2006 Jan 9. PMID: 16401645. https://pubmed.ncbi.nlm.nih.gov/16401645
[36] Geng J, Dong J, Ni H, Lee MS, Wu T, Jiang K, Wang G, Zhou AL, Malouf R. Ginseng for cognition. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD007769. doi: 10.1002/14651858.CD007769.pub2. PMID: 21154383. https://pubmed.ncbi.nlm.nih.gov/21154383
[37] Szczuka D, Nowak A, Zakłos-Szyda M, Kochan E, Szymańska G, Motyl I, Blasiak J. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients. 2019 May 9;11(5):1041. doi: 10.3390/nu11051041. PMID: 31075951; PMCID: PMC6567205. https://pubmed.ncbi.nlm.nih.gov/31075951
[38] Suzuki Hiroyuki, Yamashiro Daichi, Ogawa Susumu, Kobayashi Momoko, Cho Daisuke, Iizuka Ai, Tsukamoto-Yasui Masako, Takada Michihiro, Isokawa Muneki, Nagao Kenji, Fujiwara Yoshinori Intake of Seven Essential Amino Acids Improves Cognitive Function and Psychological and Social Function in Middle-Aged and Older Adults: A Double-Blind, Randomized, Placebo-Controlled Trial. https://www.frontiersin.org/article/10.3389/fnut.2020.586166
[39] Hase A, Jung SE, aan het Rot M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav. 2015 Jun;133:1-6. doi: 10.1016/j.pbb.2015.03.008. Epub 2015 Mar 20. PMID: 25797188. https://pubmed.ncbi.nlm.nih.gov/25797188
[40] Marchini JS, Castillo L, Chapman TE, Vogt JA, Ajami A, Young VR. Phenylalanine conversion to tyrosine: comparative determination with L-[ring-2H5]phenylalanine and L-[1-13C]phenylalanine as tracers in man. Metabolism. 1993 Oct;42(10):1316-22. doi: 10.1016/0026-0495(93)90131-7. PMID: 8412744. https://pubmed.ncbi.nlm.nih.gov/8412744
[41] Neri, D. F., Wiegmann, D., Stanny, R. R., Shappell, S. A., McCardie, A., & McKay, D. L. (1995). The effects of tyrosine on cognitive performance during extended wakefulness. Aviation, Space, and Environmental Medicine, 66(4), 313–319. https://psycnet.apa.org/record/1995-32420-001
[42] Colzato, L.S., de Haan, A.M. & Hommel, B. Food for creativity: tyrosine promotes deep thinking. Psychological Research79, 709–714 (2015). https://doi.org/10.1007/s00426-014-0610-4
[43] Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016 Jan 20;8(1):56. doi: 10.3390/nu8010056. PMID: 26805875; PMCID: PMC4728667. https://pubmed.ncbi.nlm.nih.gov/26805875
[44] Kroes MC, van Wingen GA, Wittwer J, Mohajeri MH, Kloek J, Fernández G. Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism. Neuroimage. 2014 Jan 1;84:825-32. doi: 10.1016/j.neuroimage.2013.09.041. Epub 2013 Sep 25. PMID: 24076224.
https://pubmed.ncbi.nlm.nih.gov/24076224
[45] Strasser B, Gostner JM, Fuchs D. Mood, food, and cognition: role of tryptophan and serotonin. Curr Opin Clin Nutr Metab Care. 2016 Jan;19(1):55-61. doi: 10.1097/MCO.0000000000000237. PMID: 26560523. https://pubmed.ncbi.nlm.nih.gov/26560523
[46] Kita M, Obara K, Kondo S, Umeda S, Ano Y. Effect of Supplementation of a Whey Peptide Rich in Tryptophan-Tyrosine-Related Peptides on Cognitive Performance in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2018 Jul 13;10(7):899. doi: 10.3390/nu10070899. PMID: 30011836; PMCID: PMC6073406. https://pubmed.ncbi.nlm.nih.gov/30011836
[47] Reuter M, Zamoscik V, Plieger T, Bravo R, Ugartemendia L, Rodriguez AB, Kirsch P. Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutr Res. 2021 Jan;85:14-20. doi: 10.1016/j.nutres.2020.10.005. Epub 2020 Oct 23. PMID: 33383299. https://pubmed.ncbi.nlm.nih.gov/33383299
[48] Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J. 2021 Oct;35(10):e21888. doi: 10.1096/fj.202100702R. PMID: 34473368. https://pubmed.ncbi.nlm.nih.gov/34473368
[49] Young SN, Leyton M. The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav. 2002 Apr;71(4):857-65. doi: 10.1016/s0091-3057(01)00670-0. PMID: 11888576. Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010 Mar;34(3):387-407. doi: 10.1016/j.neubiorev.2009.08.005. Epub 2009 Aug 26. PMID: 19715722.
[50] Jong CJ, Sandal P, Schaffer SW. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules. 2021 Aug 13;26(16):4913. doi: 10.3390/molecules26164913. PMID: 34443494; PMCID: PMC8400259. https://pubmed.ncbi.nlm.nih.gov/34443494
[51] Ripps H, Shen W. Review: taurine: a "very essential" amino acid. Mol Vis. 2012;18:2673-86. Epub 2012 Nov 12. PMID: 23170060; PMCID: PMC3501277. https://pubmed.ncbi.nlm.nih.gov/23170060
[52] Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010 Aug 24;17 Suppl 1(Suppl 1):S6. doi: 10.1186/1423-0127-17-S1-S6. PMID: 20804626; PMCID: PMC2994368. https://pubmed.ncbi.nlm.nih.gov/20804626
[53] Bae MA, Gao R, Kim SH, Chang KJ. Past Taurine Intake Has a Positive Effect on Present Cognitive Function in the Elderly. Adv Exp Med Biol. 2017;975 Pt 1:67-77. doi: 10.1007/978-94-024-1079-2_6. PMID: 28849444. https://pubmed.ncbi.nlm.nih.gov/28849444
[54] Chen C, Xia S, He J, Lu G, Xie Z, Han H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci. 2019 Aug 15;231:116584. doi: 10.1016/j.lfs.2019.116584. Epub 2019 Jun 18. PMID: 31220527. https://pubmed.ncbi.nlm.nih.gov/31220527
[55] Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010 Jan;208(1):19-25. doi: 10.1016/j.atherosclerosis.2009.06.002. Epub 2009 Jun 11. PMID: 19592001; PMCID: PMC2813349. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813349
[56] El Idrissi A. Taurine Regulation of Neuroendocrine Function. Adv Exp Med Biol. 2019;1155:977-985. doi: 10.1007/978-981-13-8023-5_81. PMID: 31468461. https://pubmed.ncbi.nlm.nih.gov/31468461
[57] Lima L. Taurine and its trophic effects in the retina. Neurochem Res. 1999 Nov;24(11):1333-8. doi: 10.1023/a:1027376511473. PMID: 10555772. https://pubmed.ncbi.nlm.nih.gov/10555772
[58] Schaffer SW, Jong CJ, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010 Aug 24;17 Suppl 1(Suppl 1):S2. doi: 10.1186/1423-0127-17-S1-S2. PMID: 20804594; PMCID: PMC2994395. https://pubmed.ncbi.nlm.nih.gov/20804594
[59] Wen C, Li F, Zhang L, Duan Y, Guo Q, Wang W, He S, Li J, Yin Y. Taurine is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver. Mol Nutr Food Res. 2019 Jan;63(2):e1800536. doi: 10.1002/mnfr.201800536. Epub 2018 Oct 17. PMID: 30251429. https://pubmed.ncbi.nlm.nih.gov/30251429
[60] Dolan E, Gualano B, Rawson ES. Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur J Sport Sci. 2019 Feb;19(1):1-14. doi: 10.1080/17461391.2018.1500644. Epub 2018 Aug 7. PMID: 30086660. https://pubmed.ncbi.nlm.nih.gov/30086660
[61] Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp Gerontol. 2018 Jul 15;108:166-173. doi: 10.1016/j.exger.2018.04.013. Epub 2018 Apr 25. PMID: 29704637; PMCID: PMC6093191. https://pubmed.ncbi.nlm.nih.gov/29704637
[62] Owen L, Sunram-Lea SI. Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients. 2011 Aug;3(8):735-55. doi: 10.3390/nu3080735. Epub 2011 Aug 10. PMID: 22254121; PMCID: PMC3257700. https://pubmed.ncbi.nlm.nih.gov/22254121
[63] McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007 Sep;14(5):517-28. doi: 10.1080/13825580600788100. PMID: 17828627. https://pubmed.ncbi.nlm.nih.gov/17828627
[64] Rae CD, Bröer S. Creatine as a booster for human brain function. How might it work? Neurochem Int. 2015 Oct;89:249-59. doi: 10.1016/j.neuint.2015.08.010. Epub 2015 Aug 18. PMID: 26297632. https://pubmed.ncbi.nlm.nih.gov/26297632
[65] Santacruz L, Arciniegas AJL, Darrabie M, Mantilla JG, Baron RM, Bowles DE, Mishra R, Jacobs DO. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation. Physiol Rep. 2017 Aug;5(16):e13382. doi: 10.14814/phy2.13382. PMID: 28821596; PMCID: PMC5582266. https://pubmed.ncbi.nlm.nih.gov/28821596
[66] Wax B, Kerksick CM, Jagim AR, Mayo JJ, Lyons BC, Kreider RB. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients. 2021 Jun 2;13(6):1915. doi: 10.3390/nu13061915. PMID: 34199588; PMCID: PMC8228369. https://pubmed.ncbi.nlm.nih.gov/34199588
[67] Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011 May;40(5):1271-96. doi: 10.1007/s00726-011-0877-3. Epub 2011 Mar 30. PMID: 21448658; PMCID: PMC3080659. https://pubmed.ncbi.nlm.nih.gov/21448658
[68] Clarke H, Kim DH, Meza CA, Ormsbee MJ, Hickner RC. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients. 2020 Sep 16;12(9):2834. doi: 10.3390/nu12092834. PMID: 32947909; PMCID: PMC7551337. https://pubmed.ncbi.nlm.nih.gov/32947909/Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011 May;40(5):1271-96. doi: 10.1007/s00726-011-0877-3. Epub 2011 Mar 30. PMID: 21448658; PMCID: PMC3080659. https://pubmed.ncbi.nlm.nih.gov/21448658
[69] Kreatin – warum, wann und für wen? In: Schweizer Zeitschrift für Ernährungsmedizin. 5/08. https://www.rosenfluh.ch/rosenfluh/stories/publikationen/sze/2008-05/11_Kreatin_5.08.pdf